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Abstract—An accurate solution of the source function for radiative heat transfer through a nonisothermal
absorbing and emitting grey gas between heated plates is given in terms of tabulated functions. The pre-
diction is based on an approximate formula originally proposed by Yamamoto for a grey gas atmosphere
and is extended to allow for the presence of a uniform independent internal source of energy release. It
is shown that knowledge of the Hopf function and the moments of the Chandrasekhar-Ambartsumian
X and Y functions is sufficient to calculate solutions with a maximum fractional error of about 0-01 per
cent. An alternative approach, based on Case’s method of solution, is developed in the appendix and
serves to confirm the functional forms of the approximate formulas. The results of this paper in conjunction
with an earlier paper suffice to calculate the most important physical quantities with remarkable accuracy
and simplicity.

NOMENCLATURE QD). dimensionless flux defined
C(EL), D(&)), coeflicients introduced in by equation (15);
equation (40); Q4(&D), dimensionless flux defined
E,(x), exponential integral func- by equation (16);
tion of order n defined S, internal heat source per
by equation (3); unit volume per unit time;;
H(p), Chandrasekhar’s H(yu) X, geometric depth in ab-
function; sorbing layer ;
3(&), radiative source function, X(y, &p), Chandrasekhar— Ambart-
equation (2); sumian X function;
k, volumetric absorption Y(u, &p), Chandrasekhar—Ambart-
coefficient ; sumian Y function.
L, geometric thickness of
plane layer; Greek symbols
L(&p), coefficient introduced in o, (L), nth moment of X function,
equation (26); see equation (10a);
M (&), M (&), moments defined by B (&L, nth moment of Yfunction,
equations (48) and (50); see equation (10b);
N(E &), auxiliary function intro- 7, constant equal to twice
duced in equation (33); the ratio of the second and
q*(%), Hopf function defined by first moments, of H(u),
equation (21); numerical value given
q*,q9", half-range fluxes; following equations (14);
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O E),0,(¢ &), universal functions intro-
duced in equation (4), see
also equations (5);

£, optical depth in absorbing
layer;
D& LD, resolvent kernel with one

argument zero, see equa-
tion (7b);

auxiliary function defined
by equation (7a).

ql(é’ éL)a

INTRODUCTION

IN A prEVIOUS paper [l] we considered the
prediction of radiant heat transfer through an
absorbing and emitting grey gas held between
heated opaque walls of infinite lateral extent.
The paper had two principal objectives: first,
to express in canonical form the basic equations
that determine conditions through the medium
for arbitrary wall temperatures, wall emissivities,
total optical thickness, and for any magnitude
of uniform internal energy production within
the medium; second, to develop explicit pre-
dictions of radiant heat flux at the walls and of
the discontinuities in temperature or the radia-
tion source function at the boundaries. The
latter objective was achieved by means of
closed form solutions expressed in terms of
moments of the Chandrasekhar—Ambartsumian
X and Y functions. Calculation of the required
predictions at the boundaries then became
direct since tabulated values as well as analytic
properties of the moment functions were avail-
able in the literature. Sobouti’s [2] tables yield
the necessary values correct to four decimal
places.

The development of the basic equations
resulted in the introduction of two universal
functions @ and @; from which predictions for
arbitrarily specified conditions could be
generated (see, e.g. equation (46) in [1]). These
functions, introduced explicitly in equation (4)
below, are solutions of uncoupled integral
equations. Among their many advantages are
the facts that they treat separately the case of
no internal energy release with unequal wall
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temperatures and uniform energy release with
equal wall temperatures; also, they contain no
explicit dependence on wall emissivities and
need be calculated only for black wall conditions.

The present paper undertakes to extend the
quantitative results given previously for the
boundaries and to provide explicit predictions
of the two universal functions through the
medium by means of highly accurate, although
approximate, formulas in terms of tabulated
functions. The attainment of the objective is
based on a formula first given by Yamamoto
and a generalization developed in this paper
to allow for the occurrence of uniform internal
heat generation. The desired formulas [see
equations (26) and (51)] either rival or exceed
the accuracy in most published results of
detailed numerical solutions, give proper predic-
tions at the boundary of the medium, and the
closed form relations may be manipulated
analytically. The solutions are essentially the
Eddington or diffusion approximations cor-
rected by the addition of terms involving
the Hopf function. An appendix indicates that
independent derivations can be achieved by
Case’s method of normal mode expansion.
The extension of similar analysis to more
complicated radiation transfer problems re-
mains to be considered.

The present results constitute a sequel to
[1] and the formulas assembled in the two
papers complete the list of the most important
physical quantities. The terminology is un-
modified with the exception of replacing ¢ T*/n
by the radiative source function 3. When
internal heat generation is present, local thermo-
dynamic equilibrium cannot necessarily be
assumed, and consequently oT* should be
replaced by =3 in the appropriate formulas of
[1]. The emissive power introduced by some
authors is equivalent to n3 in the present
paper. The principal restrictions on the theory
require that an appropriate averaging over the
entire frequency spectrum is acceptable, that
incident flux at the boundaries is isotropic,
and that the internal heat generation is uniform.



RADIATIVE TRANSPORT IN PLANAR MEDIUM

References to earlier work in the radiation heat-
transfer literature are given in [1] and are not
repeated here.

BASIC EQUATIONS

We consider a unidimensional medium of
finite width. The single coordinate x is measured
normal to the boundary and traverses the
region from left to right with boundaries at
x = 0and x = L. Let k = k(x) be the volumetric
absorption coefficient (assumed independent
of frequency). The dimensionless optical dis-
tance ¢ is, by definition,

£ = Elo(x) dx (1)

and when x = L, £ = &, where &, is called the
optical thickness of the medium. Our major
concern is the evaluation of the radiative source
function J(&) associated with a known rate of
internal emnergy release S per unit volume
within the medium and with a known level of
isotropic radiation incident at each of the two
boundaries. The source function for isotropic
emission is defined such that k3J(¢) is the amount
of energy emitted per unit volume, per unit
solid angle, and per unit time at the point ¢
Let g7, and g, be the energy per unit time and
area entering the medium from the left and
right boundaries (or walls), respectively. The
source function at an arbitrary position ¢ is
then, under equilibrium conditions, expressed
as the sum of contributions from the incident
energy flux, the internal sources, and from the
integrated effects of all visible volume elements.
For this particularly simple geometric con-
figuration the source function satisfies the
integral equation

S

3¢ = 9—'2 Ex0) + 22 "“ 2Bl = O + 4

¢
1
+3 fs(él)El(lé -&4hde, @

[

where E,(¢) is the nth exponential integral
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function

1
E(§) = (I) exp(— &/ p" 2 du

= [ exp(—&x)x™"dx. 3)

1
It should be remarked that in [1] local thermo-
dynamic equilibrium was invoked, and con-
sequently (&) = oT*/n where T is the local
temperature and ¢ is the Stefan—Boltzmann
constant. Here the more general form of the
source function is retained.

Let S/47k be uniform throughout the medium.
By virtue of the linearity of equation (2), the
dependence of the source function on the
parameters S/4nk, q),, and ¢,, can be sup-
pressed analytically through introduction of
two dimensionless source functions or universal
functions, ® and @g. To this end we introduce
the transformation

n3(8) = quz + (@u1 — 42) O (8) + (S/KO5(2).

)
This relation has been previously applied to the
study of an absorbing and emitting medium
held within heated opaque walls, see equation (9)
et seq. in [1].1 The source function of equation
(2) can then be calculated by means of equation
{(4) in terms of solutions of the two canonical
integral equations (I-11),

éL
O &) =3E8) + 3 g

x O, EYE(E - &y e, (5a)

sL

05t =3+3]
x Og(&, &p) El(lf - €1|) dé,. (5b)

Although in much of the literature of radiation
theory the dependence on optical thickness
£, is not explicitly indicated, we will find it
appropriate to emphasize this dependence and

t Henceforth, equations from [1] willl be referred to as,
for example, (1-9).
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equations (5) are written accordingly. Equation
(4), which is written to conform with the
symbolism of [1], follows conventional usage.
Throughout this paper we have always @ (£) =
O(Z. &) and B4(8) = O (L. L)

Approximate but highly accurate expressions
for the universal functions will be developed in
the next section. Before proceeding to this task
it is convenient to assemble a number of
related formulas which will be required. These
somewhat diverse results are consequences of
the analysis of radiative transfer in plane-
parallel media and are based on the methods
given in the treatises of Chandrasekhar [4],
Sobolev [5], and Kourganoff [6]. The auxiliary
formulas are thus given without proofs.

From equations (I-40) and (I-41), the follow-
ing precise relations apply

1 1
0.8 =3 - sy 5 LPE S
v -eq)] (@)
and
b4 )
0s(&. &) = e wig ¢
+ (& — & ¢ — P D) (6b)

In this notation the function ¥(&, &,) is, by
definition,

WE e = 1+ | By £ dE

0

(7a)

where

(¢, &) = LO,¢; &) (Tb)

and L( &,;¢;) is the symmetric resolvent
kernel of the Fredholm equations (5) with
kernel E(|¢ — &,]). It is obvious from equations
(6) that @(&,&,) is an odd function about the
point & = &;/2 and @(&/2,¢;) =3, and that
O5(&, &) is an even function about & = &;/2.
The odd and even character of these functions
will be of particular importance in the next
section.

On the boundaries & = 0, ¢;, the auxiliary
function ¥ has the exact values
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PO,¢) =1, ¥Cné=1/BC) (8)

and, consequently, the universal functions have
the following precise values at the boundaries

[13:
00,¢) = aolp)/2, O &) = Bol€L)/2 (9a)
05 (0, &p) = O5(&1, &n) = 1/[4Bo(¢0)]

=@®/[1 -00,¢f)] ©Ob)

where a, and f, are zeroth moments of the
Chandrasekhar-Ambartsumian X and Y func-
tions [4]. The nth order moments are defined as

1
(e = g X(p, &p) p” du (10a)

Bl = g Y(p, S p" dp (10b)

The surface values (9) are related by the identity
(1-32)

ao(§r) + Bolér) = 2. (11)
Two additional useful identities [4] are
Eufon(Cr) + Ba(€n)] + 2[0a(C) + B2(E0)]
= % (12)
and
ay(&r) = BilE) = EBolEr)- (13)

For a medium of large optical thickness, the
following asymptotic moment relations [1, 7]

apply
2

Bol&r) ~ i/_3?—+‘—f_1‘, &> 1 (14a)
2

0‘1(5L) + ﬂl(éL) ~ % (14b)

walE) + BoED) ~ % (140)

where /2 = 0-710446 is the ratio of the second
and first moments of Chandrasekhar’s H func-
tion [6].

In [1], the flux integral (I-45a)
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L
o¢)=1-2 ,(’;@(C, $) Ex()de
= Bo(&p) [21(&r) + B1(EL)] (15)

is identified with the dimensionless flux of
energy through a plane slab when no internal
sources of energy release are present; the flux
integral (I-45b)

Qs(é) = 2 I O (&, &) Ex(6)de = 2

(16)
establishes the proper value of the dimensionless
flux associated with a uniform distribution of
internal sources. One can also show that the
integral of ¥ can be expressed as

&L
(f) P(8, &) A = 3[as(E) — B3(CL)]
+ 28 [ox(&r) — BaED)]
& éL
+ - | Rl waary
8 [ l(cL) l(éL)] ZB (éL)
The effect of an infinitesimal change in
optical thickness on the flux integral (15) and
the surface values (9) can be examined with the
aid of the derivatives [4]

(17)

do,)
= ~hE (18)
and
d ayéy) _ B_1(E)B(EL)
i 2 - 4 -

Finally, we remark that auxiliary function
(7), in the limit ¢; — oo, becomes

P(E, 00) = /3[£ + g*(9)] (20)

where g*(&) is the Hopf function that satisfies
the integral equation [6]

a*() = 3EL0) + 3 ;f a*(ED) E(€ — £ dE,. 1)

The conventional notation for the Hopf function
is g; however, this symbol was used in {[1],
equations (I-6)} for total flux, and to avoid any
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possible confusion we denote the Hopf function
by g* The solution of Milne’s equation [6]
for a semi-infinite atmosphere

B =1 I B*¢C)) E((€ - &) dE,  (22a)

is given by
¢3
B*¢) = >~ F¥(§ ) = §F[¢ + q*(O] (22b)

where nF is the uniform flux of radiant energy
traversing the region in the negative x direction.
The Hopf function can be represented [6] by

1
I pexp(—¢/p)du
*(E) = g*(o0) —
7 = a*(0) 2\/4 H 20
where H(p) is Chandrasekhar’s H function [6]
and
Z(p)=(1 — ptanh™" p? +4n°p2.  (24)

The Hopf function is monotone increasing with
the limited range

(23)

1
N g*0) < g*(¢) < q¥(0) = % = 0710446

(25a)
and g* is within 0-09 per cent of its asymptotic
value at an optical distance of 3. Thus for large
optical thickness

a*&) ~ % = 0710446, (25b)

SOLUTIONS

The principal objective of this section is to
consider results from different attacks on the
fundamental integral equations and to show,
through comparisons, that predictions of the
source functions correct to within a small
fraction of 1 per cent can be achieved in terms
of tabulated functions. We note first the im-
portant contribution of Yamamoto [3] which
was subsequently expressed more elegantly by
King [8]. Yamamoto considered the physical
problem of radiative transfer through a finite,
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plane-parallel, grey atmosphere heated solely
from below by uniform isotropic radiation.
(In meteorological applications the boundaries
of the medium are horizontal rather than
vertical) The source function for this problem
can be inferred directly from equation (4) by
setting S = 0 because of the absence of indepen-
dent internal sources and gq,,, = 0 since there
is no reflecting surface at the top of the atmos-
phere. Yamamoto based his proposed solution
on a comparison of the approximate discrete
ordinate solution of equation (5a) with the
exact solution of the Milne problem. In the
present notation, the functional form of the
solutiont is

O &) =4 — 30(E) (5 - %)

— 3¢ LD [9%8) — q*¢ — O] (26)

where ¢*(¢) is the Hopf function defined by
equation (21) and the coefficients Q and L
remain to be determined as described below.
Yamamoto identified Q(¢;) as the dimensionless
flux, defined by equation (15), which has been
evaluated in terms of the moments of the
Chandrasekhar-Ambartsumian X and Y func-
tions. The necessary moments are tabulated, but
a discussion of numerical results is deferred to
the next section. It should be stressed that
Q(&;p) is equivalent to F/Ig in the notation of
Yamamoto {[3], equation (21)} or F/I, in the
notation of King [8]. Thus Q(¢;) of this paper
does not conform with the Q appearing in the
references just cited. Now let the coefficient
L(&;) be fixed by requiring that solution (26)
be exact at the boundaries. Thus, by equating
solution (26) evaluated at £ = 0 with the known
surface value (9a)

e A

+30¢) L [9*¢D) - ¢*O] @7

t In the Appendix we show that equation (26) can be
deduced by Case’s method of normal mode expansion.
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one obtains, after solving for L and using
identities (11) and (12),

243 [W3/2)(2z + Ba) — 1/4/3]
(g + By) [q*(¢) — 1/\/3] .

LSy =
(28)

In the above formula and those to follow we
omit for simplicity the argument ¢, of the
moments o, and B, Likewise, the argument £,
of Q@ and L will be omitted. The asymptotic
behaviour of the above coefficients follows
directly from equations (14) and (25b)

L~1, ¢&>1 (29a)
4 1
~ 29b
Q 37+ G, (29b)

Yamamoto’s proposed solution (26) was based
on intuitive considerations, and Sobolev [9]
has, in fact, demonstrated that it is not exact.
The derivative of @ (&, ;) becomes logarithmic-
ally infinite at both boundaries =0, &,;
Sobolev has shown that if the derivative of
solution (26) has the required precise growth
rate as a boundary is approached, then a
logical consequence of Yamamoto’s solution is

2 1
L=—r—o— (30)
\/3 oy + ﬁl
Equations (28) and (30) are consistent if and
only if
3
¢ =L+ 8 61

It is possible to establish, however, that equation
(31) is incorrect. The tabular values of g* in
Kourganoff [6], for example, do not agree
with evaluations of the right side of equation
(31) by means of Sobouti’s [ 2] tables of moments.
An error of about 0-2 per cent occurs for small
optical thicknesses. An independent check on
the inaccuracy of equation (31) has also been
given by Sobolev. One concludes, therefore,
that the relation proposed by Yamamoto is
not exact and that, as a consequence, an
arbitrariness arises in the choice of L. We
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choose here the value of L provided by equation
(28), that is, the value for which equation (26)
predicts the exact value of @(£ &) at the
boundaries.

Aluluugu cquauuu {26 has been shown to
be in error in its prediction of gradients near
the boundaries, its incorrectness is virtually
impossible to distinguish if one uses numerical
tabulations with three-figure accuracy. This
order of accuracy is typical of much of the
numerical and graphical data given in the
literature. In comparison with such data, there-
fore, equation (26) is equally acceptable, has
analyticadvantages, and yields exact magnitudes
in the regions most difficult to study, that is,
at the boundaries. We propose now to acknow-
ledge equation (26) as a particularly accurate
approximation of @ (¢, &;) and to use its analytic
simplicity, that is, its representation of a
function of two variables as a sum of products
of unidimensional functions, to achieve a com-
parable prediction of @s(¢, &;). Since from
equations (6) each of the universal functions is
known once the auxiliary function ¥(¢, &;) is
determined, it is appropriate to proceed by the
intermediate step of developing a representation
for ¥. To this end, we note first, by a comparison
of equations (6a) and (26), that (&, £,) satisfies
the functional equation

PEL) - W - L) =35
<6 - G- 0145 5[40
It follows that —-q*¢ -9 (32
W(E &) = 3ﬂQ ¢ +§_Qﬁ£ o)
+ N E)+ B  (33)

where N(&, &) is a symmetric function about
& =¢&,/2, thatis,

N(E, &) = N(EL — &80 (34)

The additive term B(¢;) was included in order
to impose the convenient condition
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N, &) = N(Gr.¢) =0 (35)

When & = 0, the auxiliary function ¥ is‘unity
and this condition is used to determine B(¢;).
Thus,

3Q0L
Bey=1- L%
and ¥ can be rewritten as
3 3QL
PEL) =1+ 8+

x [q%&) — 131+ N &) (36)

One can easily verify that this expression for
¥ satisfies the right surface condition (&, &;)
= 1/By- It remains to deduce an expression
for the symmetric function N(¢, &)).

The relation between ¥ and @ is given by
equation (7a) and hence from equation (36)

lox { (<
o ) = et = 32
30Ldg"Q) | INEE)

2, & T e 37

For large optical thickness the coeflicients are
given by equations (14) and (29) and & becomes

ON(, ¢
ot

Sobolev [10] has derived the following asympto-
tic formula for large optical thickness:

oe. £ ~ L +¢3dq*@

(38)

3 dg*
o 0~ L+ 3900 yfé( c)
B3 *
+=Lole -0 - POl 09)

A comparison of the last two equations suggests
a valid approximation for dN/J¢ throughout
the full range of optical thickness, namely,

ON(. &) & _
= acu( )

+ D) [9*¢€L — &) — ¢*©)]  (40)
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where the coefficients C and D are to be de-
termined for small optical thickness, and for
large optical thickness they must have the
asymptotic form

J3
Y+ &

The proposed form for ¢ can now be written,
from equations (37) and (40), as

C&r) ~ D&y ~ (41)

_30  30Ldg*Q)
2l =35 T2p a
+ C(% - )-,+ Dlg*¢.— & — ¢} 42

Evaluating this expression for ¢ at the right
surface £ = £, by using the exact result &(&;,

&) = B_1/2, one obtains, after multiplying
through by £,/2,
B-1Bo dq*(¢,)
S -ge ety
choe, o0 - ] @y

But by differentiating equation (27) and using
equations (18) and (19), we obtain
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3 d@L)
2B, A&

It follows from equations (144, 18, 29) that these
coefficients have the correct asymptotic form
(41). The moment B, is a tabulated function,
but the derivative of QL is expressed in terms
of f_; and the derivative of the Hopf function,
neither of which is tabulated. Consequently,
we resort to an alternative method to fix D.

After integrating equation (42), the auxiliary
function ¥ is found to be

(46)

4
3
#0 = 1+ [ogucads = 145 2
0

+ ol - )+ ﬁo L@ - o]
+ D[My(&) — MyEr— & — My®]  @47)
where
M(&) = (fq*(co dé,. 48)

B_ 1/30 dg*(£)) " The remaining unspecified coefficient D(&) is
=30 + 30L — 365¢L fixed by requiring that the integral of ¥ conform
dé,

to the exact result (17). Thus by substituting
3d(@L) [4*(0) — g*(&L)]. (44) equation (47) in (17) and solving for D, one

4 dg, finds, after using identities (12) and (13), that

3QL 3QL
pyra (P o= 1) - 3%
D(&) = 0 (49)
e E M, (&) — IM,(&)
where
33 éL 4

M) = (I) M,(§)d¢ = g dégq*(él) dé,. (50)

These two expressions for ff_,f, are identical

if we choose

= %Bo

The goal of representing @5 (&, £;) as a sum
of products of unidimensional functions is
now achieved by simply substituting equation

(45) (47) in (6b) to obtain
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Bs(& ¢ = 4%30 + 388, - &)
527 [4°6 = O+ ¢°0) — 4°C) — 4°0]
0

+ i[Ml(éz) - M, — O — M) (51)
2B,

In obtaining this form of the solution, we
have used identity (12) and the definition (28)

of L.
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the following formula of Huang [11] which was
derived by variational methods:

PO=A+ Y AED ()
where =2
A, = 071044067 A, = —0-61868635
A, = —027894936 A= 035260116.
Ay = 052805161

The exponential integral functions are tabu-
lated by several authors, see, for example [6],

Table 1. The Hopf function q*(&) and its integral M (&)

¢ g M, (&) ¢ g% M9 4 q*(¢) M,(Q)
0 0-57735 0 0-60 0-68580 0-39337 2:20 0-70855 1-51677
0-01 0-58824 0-00584 0-65 0-68808 042772 2:30 0-70880 1-58764
0-02 0-59538 001176 0-70 0-69010 046217 2:40 0-70901 1-65853
0-03 0-60123 001774 075 069191 049672 2:50 070919 172944
0-04 0-60627 0-02378 0-80 0-69353 0-53136 2:60 0-70935 1-80037
0-05 061074 0-02986 0-85 0-69498 0-56607 270 0-70949 1-87131
0-06 0-61478 0-03599 090 0-69629 0-60085 2:80 0-70961 1-94226
007 0-61846 0-04216 095 0-69747 0-63570 290 0-70972 201323
0-08 0-62185 0-04836 1-00 0-69854 0-67060 300 0-70981 2:08421
0-09 062499 005459 110 0-70038 0-74055 310 0-70989 2:15519
010 0:62792 0-06086 1-20 0-70191 0-81067 320 0-70995 2:22618
015 064014 009257 1-30 0-70318 0-88092 330 0-71001 2:29718
0-20 0-64956 0-12483 1-40 0-70424 095129 340 0:71007 2:36819
0-25 0-65713 0-15750 1-50 0-70513 102176 350 0-71011 243920
0-30 0:66337 0-19052 160 0-70589 109232 3-60 071015 2:51021
0-35 0-66862 0-22382 1-70 0-70652 116294 370 0-71019 2-58123
0-40 0-67309 025737 1-80 0-70706 1-23362 3-80 0-71022 2:65225
045 0-67694 0-29112 190 0-70753 1-30435 390 0-71024 2:72327
0-50 0-68029 0-32505 2:00 070792 1:37512 400 071027 2-79429
0-55 0-68322 0-35914 2:10 0-70826 1-44593

NUMERICAL CALCULATIONS
In the previous section, solutions of the

universal functions & (¢, £;) and 6 (¢, ;) were
expressed by equations (26) and (51) in terms of
the unidimensional functions g*(£), M (), Q(£L),
L(&,), D(£y), and By(£,). It remains to compute
and tabulate these requisite functions. The
task is direct once accurate values of the Hopf
function and the basic moment functions are
known.

Six-place tabular values of the Hopf function
are given by Kourganoff ([6], p. 138). For
computational purposes, a convenient represen-
tation is given to a high degree of accuracy by

4x

p. 266, and formulas suitable for computing
machine calculations are given by Abramowitz
and Stegun ([12], p. 231). Table 1 lists five-place
values of g*(¢) computed for the Huang formula
(52) for £ = 0-01.

The integral of the Hopf function (48) can
also be evaluated by using the Huang formula
(52):

¢

5
M, = jq*(él) dé, = A& + Z

i=2

x A,-E - E,-H(c')] (53)
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Likewise,
4 éz

My(%) =jM1(fl) d¢, = Al-é— + Z
[

j=2
xA-[§+E~ (é)—;:l (54)
J j it2 j+1 :
Table 1 also includes tabular values of M,(¢).
From equation (23), the asymptotic integral
of g* is

2 3
ME~ler o2 65
since
1 pdp 3?7
Q?f Awze 10§ O

0

The authors are not aware of a simple proof of
identity (55b); the result given was obtained
indirectly from analysis based on Case’s method.

A table of the moment functions o,(&;) and
B.(&p) given by Sobouti [2] was used in our
earlier paper [1]. Recently, a new and more
accurate table of the Chandrasekhar—-Ambart-
sumian X and Y functions has been computed
by Carlstedt and Mullikin [13] (note that
tabulated values for @ = 1 are required in the
present application). This latter table was
used to compute the moments necessary for the
present work. Table 2 includes numerical
values for optical thicknesses up to 3-5 of
Bo(é) and the coefficients Q(£;) and L(¢;)
defined by equations (15) and (28). The asympto-
tic formulas at the bottom of the table may be
used for larger values of optical thickness.
An independent check on the values of Q is
afforded by calculations of Mingle [14]. The
flux Q(&,) is equivalent to the total transmission
function for a grey slab computed by Mingle,
and the tabulation of Q(¢,) in Table 2 agrees
with his numerical work to within one unit in
the fifth decimal place. The coefficient D(&;)
as defined by equation (49) also appears in
Table 2. Some loss in the number of significant
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Table 2. The coejj‘icien_ts Bo, Q, L and D

L Bo(Cr) (&) Ly D(&p)
020 077713 0-84918 10383 1-46
0-40 0-66680 0-74585 1-0218 1-123
0-60 0-58966 066730 10138 0950
0-80 0-53079 060473 10092 0-835
1-00 048370 0-55340 1-0063 0-750
120 044487 0-51037 1-0045 0-684
1-40 041215 047370 1-0032 0-629
1-60 0-38411 044204 10023 0-584
1-80 0-35977 041441 10017 0-545
2-00 0-33842 0-39006 1-0013 0512
220 0-31951 0-36843 1-0009 0482
2-40 0-30263 0-34909 1-0007 0456
2-60 0-28748 033169 1-0005 0433
2-80 0-27378 0-31595 1-0004 0412
300 026135 030164 1-0003 0-3928
350 023472 0-27097 10002 0-3524
4
&> 1 M 3 1 V3
7+ &L 7+ & ¥+ &L
7 = 142089

figures occurs in the calculation of D for small
thickness. However, four-place accuracy can
still be retained in the evaluation of ¥ and/or
O because D is the coefficient of a quantity
that is small when the optical thickness is small.

Asasample calculation, Table 3 lists numerical
values of the universal function @ and @5
obtained using formulas (26) and (51). Values
are given only over the half range of £ since the
functions are known to be, respectively, odd
and even. A comparison of these results with
independent numerical solutions of the basic
integral equations (5) computed by the authors
[1] indicates that the maximum fractional
error of the approximate predictions will be
less than 0-01 per cent. In spite of the consider-
able literature regarding the problem of thermal
radiative transfer, no numerical solutions of
comparable accuracy have been found. An
additional accuracy check was made by sub-
stituting solutions (26) and (51) into the flux
integrals (15) and (16) and evaluating the
integrals by numerical quadrature. The results
were found to agree with the exact values
Bolay + B,) and &,/2 to within +0-00003.



RADIATIVE TRANSPORT IN PLANAR MEDIUM 1423

Table 3. Universal functions ® and O

€L =02 ¢L=10 cL=20
e 88D Os8d) O L) 68D OEL) Os(6<)
0 06114 03217 07581 05168 (8308 07387
005 05967 03280 07230 05674 07866 08816
010 05845 03321 06946 06006 07509 09776
015 05730 03353 06682 06268 07174 10546
020 05620 03378 06429 06480 06851 11178
025 05513 03399 06183 06652 06535 11695
030 05408 03415 05942 06787 06224 12107
035 05305 03427 05704 06891 05916 12423
040 05203 03435 05468 06963 05610 12646
045 05101 03440 05234 07007 05305 12779
050 05000 03442 05000 07021 05000 12824

If equations (26) and (51) are evaluated for
&, > 1 and ¢ distant from the boundaries by
using formulas (14a, 25b, 29, 41, 55a), the
following precise asymptotic forms are obtained

1
I e

O E) ~ &L — &) + T:%V{L +%7’2 + 4_90
(57

which aside from some numerical constants
correspond to the Eddington approximations
given by (I-64) and (I-69). Figure 1 shows the
various contributions to Os(¢, &) — 1/(48,)
given by the terms in formula (51) for an

optical thickness of 2. It is clear that the para-
bolic Eddington approximation can only repre-
sent the solution near the center of the slab
and then only if the vertex of the parabola is
nearly coincident with the exact value of
O(EL/2,&). Both © and @5 are nonanalytic
at the boundaries £ =0, £, and, in fact, their
derivatives behave as E (&) as £ - O or E (¢, —
&) as £ - &, Clearly, this behaviour near the
boundaries of a slab is not exhibited by the
Eddington or diffusion approximations.
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APPENDIX

The purpose of this appendix is to show
that the functional form of the Yamamoto
solution (26} is equivalent to the zeroth-order
approximation obtained by Case’s method [15]
of normal mode expansion. The restrictions
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previously imposed on the properties of the
medium, that is, grey gas, isotropic emission,
etc., also apply to the following discussion.

We digress for a moment and recall that
specific intensity for a plane-parallel slab satis-
fies the following equation of transfer [4]

ug—f—éﬂ = — I w + 3()
where u = cos6 and @ is the angle between
the direction of increasing optical depth and a
given direction. In the absence of independent
internal sources, the source function J(&) of a
conservative radiation field is equal to the
mean intensity I defined by

(Al)

_ 1
I=4§ I&mwdn (A2)
Half-range intensities are introduced as
I pw=1"¢ w, OSusl}
- A3
1Ew=1"Ew -1<p<of @
and the half-range fluxes are defined by
1
q" (&) = 2n [ (& ) du (Ada)
-1
g (§)=12n (j; =€ pydu (Adb)

where the net flux is

1
q) =q"() —q () =2n _Il pI(G, pydu.  (AS)

Since our interest here is confined to the
universal function @ (¢, £;), we assume that the
slab is irradiated by uniform isotropic radiation
of unit magnitude at the left-hand boundary
(¢ = 0) and that there is an absence of incident
radiation at the right-hand boundary (£ = £)).
The boundary conditions appropriate to the
calculation of @ (¢, £;) are thus

romw=1 I¢.,Ww=0 (A6)

and from equations (A4), g*(0) =g}, ==
and g~ (¢,) = q,,, = 0. Consequently, the source
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function (4) is

3 =65 I ¢ wdp. (A7)
The specific intensity at any point is given by a
formal solution of the equation of transfer
(A1). For example, the variation with angle of
the intensity emanating from the right-hand

surface is

I, ) = exp(—¢i/n)
L
+ g O Eexp[— (& — &/u] d¢/u

ﬂo(éz)

(A8a)

==X ¢) + Y E)] (A8D)
where the X and Y functions are tabulated by
Sobouti [2] and Carlstedt and Mullikin [13].
The emergent intensity (A8b) was derived by
King [16] by an invariant approach and was
obtained here by utilizing equations (AS8a),
(6a), (I-30), and (7a). The flux at the right-hand
surface is from (A8b) and (A4a)

a0 _

T

TCD _ pen L@ + BiE] (49)

which is identical to the dimensionless flux:

integral (15). It is important to recall that the
total flux is constant across the slab in the
absence of internal sources.

The Case method [15] for the present problem
consists of an expansion of the intensity I(¢, u)
in terms of the eigenfunctions of the transfer
equation (Al) (with 3J(&) replaced by (A2)).
The continuum eigenfunctions are

@\(u) exp (—¢/v)

where

o) = 1P——# A0S — ) (Alla)

with
Av)=1—vtanh™ 1y (A10b)

and the index v is real and lies between —1 and 1.
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The P signifies that an integral with the factor
1/(v — p)is to be evaluated as a Cauchy principal
value and d(u — v) is the Dirac delta function.
For radiative transfer in a grey gas (c =1 in
neutron transport literature) the two linearly
independent discrete solutions [17] are a con-
stant and a constant times (¢ — p). Consequently,
the specific intensity can be expanded as

IE&w=a+bé—w

1

+ Il A() ¢, () exp (—&/v) dv (A1)
where a, b, and A(v) are arbitrary expansion
coefficients which are fixed by requiring that
boundary conditions (A6) be satisfied. The
necessary normalization and orthogonality rela-
tions are given by Kudéer, McCormick and
Summerfield [18]. Omitting the details of the
analysis outlined by Ferziger and Simmons
[19], one finds that the expansion coefficients
satisfy

a=4- b% (A12)
1
-1 AW)exp(—¢&p/v)vdy
b 1
Y+ & [ Y 3! HO) ]
(Al3a)
and
-b
A = J3HY Z()
1
1 A(W)exp (=& /v dv'
t 3H) Z(v)J H) o+ "0
(A13b)
A(—v) = —A(v)exp(—¢/v)  (Al3g)

where H(v) is Chandrasekhar’s H function [4],
Z(v) is defined by equation (24), and the numeri-
cal value of y is given by equation (25a). The
function X(—v) appearing in the paper by
Ferziger and Simmons [19] is equal to /3/H(v)
in the present notation.
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Equations (Al13) form a pair of coupled
equations to be solved for the coefficients b
and A(v). Equations (A7, All, Al2, Al3c)
together with the normalization condition

1

_Il ppdu =1 (A14)

can be combined to give an expression for the
source function:

30 -66.c0 =3 +b(: - )

1

+ % jA(v) exp(—¢&/v)dv

1

- %jA(v) exp[—(E — Opldv (A1)

Apart from a numerical factor, the coefficient
b represents the radiative flux

49 _ _ g, (A16)
K

This is proved by introducing the intensity
expansion {All) into the flux expression (AS5)

and using the known equality
1
_Il po () du = 0.

Since flux is constant across the slab, equations
{A9) and (A16) may be equated and therefore

b= —3o&r) [os(&) + B1(ED] = — 20D
(A17)

Thus, the variation of b with optical thickness
is known [see Table 2 for a tabulation of Q(£,)].

Equation (A13b) is a Fredholm integral
equation for A(v) which can be solved by the
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method of successive approximations. Substitu-
tion of the lowest order approximation

—b
J3 HB) Z(v)

in equation (Al5) yields, after noting identity
(A1),

G éL)z%—%Q(éL)( - é)-

AO%) = (A18)

2
/3 I: 1exp(——{/v)dv
g Q¢ | - THO Z0y)
[4]

1

L | &P [ = &/v]dv
H(v) Z(v) ’

(A19)

But by using the Hopf function as given by
equation (23), equation (A19) can be rewritten as

O &) =1 —30¢0) (f - %L)
—30€D[a%0 — ¢ — O] (A20)

Apart from the absence of the last term multi-
plicative factor I({;) which is of order one
{see Table 2), this solution is identical to the
proposed solution (26). Since higher order
terms are neglected, the solution is, of course,
not exact and consequently the coefficient of
[g*(&) — g*(&, — &)] is not unique. However,
a more accurate solution can be anticipated if
the coefficient is assumed to be an unspecified
constant which is then fixed by some additional
constraint. This, in fact, was the way in which
the actual coefficient QL in equation (26) was
determined.

The functional form of the @5 solution (51)
can also be deduced by using Case’s method.
However, the analysis is less direct and will
not be presented here.

Résumé—On donne 3 I'aide de fonctions tabulées une solution précise de 1’expression fonctionnelle de
la source pour le transport de chaleur par rayonnement 4 travers un gaz gris non isotherme absorbant
et émetteur placé entre des plaques chauffées. La prévision est basée sur une formule approchée proposée
originellement par Yamamoto pour une atmosphére gazeuse grise et on I’a étendue pour tenir compte
de la présence d’une source interne de dégagement d’énergie indépendante et uniforme. On montre que
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la connaissance de la fonction de Hopf et des moments des fonctions X et Y de Chandrasekhar—

Ambartsumian est suffisante pour calculer les solutions avec une erreur relative maximale de 0,01 pour

cent. Une autre approximation basée sur la méthode de résolution de Case, est exposée dans I'appendice

et sert & confirmer les expressions des formules approchées. Les résultats de cet article en liaison avec un

article antérieur suffisent pour calculer les quantités physiques les plus importantes avec une précision
et une simplicité remarquables.

Zusammenfassung—Eine genaue Losung der Quellfunktion fiir den Strahlungswiirmetransport durch ein
nichtisothermes, absorbierendes und emittierendes graues Gas zwischen zwei beheizten Platten wird in
Form von tabellierten Funktionen gegeben. Die Berechnung beruht auf einer urspriinglich von Yamamoto
fiir eine graue Gasatmosphire angegebene Niherungsgleichung und wird erweitert um eine gleichméssige
unabhingige Energieabgabe zu erfassen. Fs wird gezeigt, dass die Kenntnis der Hopf-Funktion und der
Momente der Chandrasekhar-Ambartsumian X und Y Funktionen geniigt, um die Losungen mit einem
maximalen Teilfehler von etwa 0,019, zu berechnen. Eine auf der Lésungsmethode von Case beruhende
Alternativniherung wird zur Bestidtigung der Funktionalformen der Niherungsgleichungen im Anhang
wiedergegeben. Die Ergebnisse dieser Arbeit in Verbindung mit einer fritheren geniigen, um die meisten
wichtigsten physikalischen Grossen mit bemerkenswerter Genauigkeit und Einfachheit zu ermitteln.

Anpnorauua—B Bupe nporabynnporaunx PyHxuuli NPHBORATCA TOUHBIE peIeHNA PYHKIHK
HCTOYHMKA JJIA JIYYHCTOTO TelIoo0MeHa, B HeM30TepMuuecKol Hanydalolie-HOIIOmaomel
cepolt rasoBoil cpefa, 3aKIIOYEHHONW MeM Iy HArpeTHMM INIaCTHHKaMu. Pacyer ocHOBaH Ha
npubamxennoft gopmyne Amamaro, MORMPHUAPOBAHHON IJIA yYETA HE3ABUCUMOTO ORHO-
PORHOrO MCTOYHMKA McnyckaeMoll sHeprum. IlokasaHo, 4TO JAJIA peIUeHHA ¢ MAKCHMAIbHOM
norpemHocteio 0,01 % mocrarouno suate dyukumio Xomda m momentH OyHkmmi X u V
Yauapacexkxapa u AmGapuymana. B npuioeHnu najaraerca Apyro#t noxxojx, OCHOBAHHHI
Ha Merofe Helsa, KOTODHIl CIYHHT ANA NOATBEP:AEHNA QYHKIMOHANLHWX (OpM . IpH-
GimsxeHHHBX PopMya. Peaysapratel 5To# paGOTH COBMECTHO ¢ AAHHBIMU NpegHAymielt cTaThu
MOry#u RpPHMeHATbCH JJIA pacdera Haubojee BaKHBIX (UBHHECKMX BeJHYMH C BHCOKOMN
TOYHOCTHIO M TIPOCTOTOMH, ’
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