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Abstract-An accurate solution of the source function for radiative heat transfer through a nonisothermal 
absorbing and emitting grey gas between heated plates is given in terms of tabulated functions. The pre- 
diction is based on an approximate formula originally proposed by Yamamoto for a grey gas atmosphere 
and is extended to allow for the presence of a uniform independent internal source of energy release. It 
is shown that knowledge of the Hopf function and the moments of the Chandrasekhar-Ambartsumian 
X and Y functions is sufficient to calculate solutions with a maximum fractional error of about 0.01 per 
cent. An alternative approach, based on Case’s method of solution, is developed in the appendix and 
serves to confirm the functional forms of the approximate formulas. The results of this paper in conjunction 
with an earlier paper sufGce to calculate the most important physical quantities with remarkable accuracy 

and simplicity. 

NOMENCLATURE 
Q&1? 

coefficients introduced in 
equation (40) ; QdtA 
exponential integral func- 
tion of order n defined S, 
by equation (3); 
Chandrasekhar’s H(p) x, 

function ; 
radiative source function, X(cL, L)? 
equation (2) ; 
volumetric absorption Y(P. 5d> 

coefficient ; 
geometric thickness of 
plane layer ; Greek symbols 
coefficient introduced in %(5L.), 
equation (26) ; 
moments defined by ML), 
equations (48) and (50) ; 
auxiliary function intro- Y, 
duced in equation (33) ; 
Hopf function defined by 
equation (21) ; 
half-range fluxes ; 

1413 

dimensionless flux defined 
by equation (15) ; 
dimensionless flux defined 
by equation (16) ; 
internal heat source per 
unit volume per unit time ; 
geometric depth in ab- 
sorbing layer ; 
Chandrasekhar- Ambart- 
sumian X function ; 
Chandrasekhar-Ambart- 
sumian Y function. 

nth moment oflX function, 
see equation (1Oa) ; 
nth moment of Yfunction, 
see equation (lob) ; 
constant equal to twice 
the ratio of the second and 
first moments, of H(p), 
numerical value given 
following equations (14); 
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0 (r, tJ,O, (& 53, universal functions intro- 
duced in equation (4), see 
also equations (5) ; 

5, optical depth in absorbing 
layer ; 

@K, 53, resolvent kernel with one 
argument zero, see equa- 
tion (7b) ; 

wr> r3, auxiliary function defined 
by equation (7a). 

INTRODUCTION 

IN A PREVIOUS paper [I] we considered the 
prediction of radiant heat transfer through an 
absorbing and emitting grey gas held between 
heated opaque walls of infinite lateral extent. 
The paper had two principal objectives: first, 
to express in canonical form the basic equations 
that determine conditions through the medium 
for arbitrary wall temperatures, wall emissivities, 
total optical thickness, and for any magnitude 
of uniform internal energy production within 
the medium; second, to develop explicit pre- 
dictions of radiant heat flux at the walls and of 
the discontinuities in temperature or the radia- 
tion source function at the boundaries. The 
latter objective was achieved by means of 
closed form solutions expressed in terms of 
moments of the Chandrasekhar-Ambartsumian 
X and Y functions. Calculation of the required 
predictions at the boundaries then became 
direct since tabulated values as well as analytic 
properties of the moment functions were avail- 
able in the literature. Sobouti’s [2] tables yield 
the necessary values correct to four decimal 
places. 

The development of the basic equations 
resulted in the introduction of two universal 
functions 0 and 8, from which predictions for 
arbitrarily specified conditions could be 
generated (see, e.g. equation (46) in [l]). These 
functions, introduced explicitly in equation (4) 
below, are solutions of uncoupled integral 
equations. Among their many advantages are 
the facts that they treat separately the case of 
no internal energy release with unequal wall 

temperatures and uniform energy release with 
equal wall temperatures; also, they contain no 
explicit dependence on wall emissivities and 
need be calculated only for black wall conditions. 

The present paper undertakes to extend the 
quantitative results given previously for the 
boundaries and to provide explicit predictions 
of the two universal functions through the 
medium by means of highly accurate, although 
approximate, formulas in terms of tabulated 
functions. The attainment of the objective is 
based on a formula first given by Yamamoto 
and a generalization developed in this paper 
to allow for the occurrence of uniform internal 
heat generation. The desired formulas [see 
equations (26) and (51)] either rival or exceed 
the accuracy in most published results of 
detailed numerical solutions, give proper predic- 
tions at the boundary of the medium, and the 
closed form relations may be manipulated 
analytically. The solutions are essentially the 
Eddington or diffusion approximations cor- 
rected by the addition of terms involving 
the Hopf function. An appendix indicates that 
independent derivations can be achieved by 
Case’s method of normal mode expansion. 
The extension of similar analysis to more 
complicated radiation transfer problems re- 
mains to be considered. 

The present results constitute a sequel to 
[I] and the formulas assembled in the two 
papers complete the list of the most important 
physical quantities. The terminology is un- 
modified with the exception of replacing aT4/n 
by the radiative source function 3. When 
internal heat generation is present, local thermo- 
dynamic equilibrium cannot necessarily be 
assumed, and consequently oT4 should be 
replaced by n3 in the appropriate formulas of 
[l]. The emissive power introduced by some 
authors is equivalent to ~3 in the present 
paper. The principal restrictions on the theory 
require that an appropriate averaging over the 
entire frequency spectrum is acceptable, that 
incident flux at the boundaries is isotropic, 
and that the internal heat generation is uniform. 
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References to earlier work in the radiation heat- 
transfer literature are given in [l] and are not 
repeated here. 

BASIC EQUATIONS 

We consider a unidimensional medium of 
finite width. The single coordinate x is measured 
normal to the boundary and traverses the 
region from left to right with boundaries at 
x = 0 and x = L. Let k = k(x) be the volumetric 
absorption coefficient (assumed independent 
of frequency). The dimensionless optical dis- 
tance < is, by definition, 

t =j+xNx (1) 

and when x = L, 5 = tr. where tr. is called the 
optical thickness of the medium. Our major 
concern is the evaluation of the radiative source 
function 3(t) associated with a known rate of 
internal energy release S per unit volume 
within the medium and with a known level of 
isotropic radiation incident at each of the two 
boundaries. The source function for isotropic 
emission is defined such that D(5) is the amount 
of energy emitted per unit volume, per unit 
solid angle, and per unit time at the point r. 
Let C& and qi2 be the energy per unit time and 
area entering the medium from the left and 
right boundaries (or walls), respectively. The 
source function at an arbitrary position 5 is 
then, under equilibrium conditions, expressed 
as the sum of contributions from the incident 
energy flux, the internal sources, and from the 
integrated effects of all visible volume elements. 
For this particularly simple geometric con- 
figuration the source function satisfies the 
integral equation 

where E,(r) is the nth exponential integral 

function 

J%(O = i exp ( - 5/cO F2 dp 
0 

= lexp(-ex)x-“dx. (3) 

It should be remarked that in [l] local thermo- 
dynamic equilibrium was invoked, and con- 
sequently 3(t) = oT4/n where T is the local 
temperature and cr is the Stefan-Boltzmann 
constant. Here the more general form of the 
source function is retained. 

Let S/4nk be uniform throughout the medium. 
By virtue of the linearity of equation (2), the 
dependence of the source function on the 
parameters S/47&, qGl, and qw2 can be sup- 
pressed analytically through introduction of 
two dimensionless source functions or universal 
functions, 0 and 0s. To this end we introduce 
the transformation 

n3(5) = 4w2 + (dl - qw2) @ 63 + (S/k) @s (5). 

(4) 

This relation has been previously applied to the 
study of an absorbing and emitting medium 
held within heated opaque walls, see equation (9) 
et seq. in [l].t The source function of equation 
(2) can then be calculated by means of equation 
(4) in terms of solutions of the two canonical 
integral equations (I-l 1). 

(54 

Although in much of the literature of radiation 
theory the dependence on optical thickness 
& is not explicitly indicated, we will find it 
appropriate to emphasize this dependence and 

t Henceforth, equations from [l] willl be referred to as, 
for example, (I-9). 
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equations (5) are written accordingly. Equation 
(4) which is written to conform with the 
symbolism of El], follows conventional usage. 
Throughout this paper we have always O(t) = 

@(& L.) and o,(t) = @ s(L L). 
Approximate but highly accurate expressions 

for the universal functions will be developed in 
the next section. Before proceeding to this task 
it is convenient to assemble a number of 
related formulas which will be required. These 
somewhat diverse results are consequences of 
the analysis of radiative transfer in plane- 
parallel media and are based on the methods 
given in the treatises of Chandrasekhar [4], 
Sobolev [5], and Kourganoff [6]. The auxiliary 
formulas are thus given without proofs. 

From equations (I-40) and (I-41), the follow- 
ing precise relations apply 

and 

+ w,. - 53 5L) - mI,- L)l. VW 

In this notation the function Y(& CL) is, by 
definition, 

Y(e, 53 = 1 + 5 @(r,, 53 d5, (7a) 
0 

where 

@(5,5L) = L(O, r ; a VW 

and L(<, <r; 53 is the symmetric resolvent 
kernel of the Fredhohn equations (5) with 
kernel &(I{ - l1 I). It is obvious from equations 
(6) that S({, 53 is an odd function about the 
point < = &/2 and S&/2, &) = i, and that 
OS (l, 53 is an even function about 5 = t;,/2. 
The odd and even character of these functions 
will be of particular importance in the next 
section. 

On the boundaries 5 = 0, tL, the auxiliary 
function Y has the exact values 

WA 53 = 1, WL t-3 = l/Bo(td (8) 

and, consequently, the universal functions have 
the following precise values at the boundaries 

Cll: 
@to, 53 = aob3/2> WA 53 = BOGY2 (94 
@s 64 5L) = 0, G., 5L.I = 1/C4Bo(5,)1 

= M-1 - @a L,l Pb) 

where a0 and /IO are zeroth moments of the 
Chandrasekhar-Ambartsumian X and Y func- 
tions [4]. The nth order moments are defined as 

I, = a X(PU, L) P” dp (lOa) 

ML) = a VP, L) cc” dp. (lob) 

The surface values (9) are related by the identity 
(I-32) 

so(L) + BOG.) = 2. (11) 

Two additional useful identities [4] are 

L.[ar(L) + P,(L)] + 2[a,(L) + 82&U 
4 

=---- 
3Bo(SL.) 

(12) 

and 

a&) - Pi(L) = 540(L). (13) 

For a medium of large optical thickness, the 
following asymptotic moment relations [l, 73 

apply 

2 1 

where y/2 = 0.710446 is the ratio of the second 
and first moments of Chandrasekhar’s H func- 
tion [6]. 

In [l], the flux integral (1-45a) 
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QKL.) = 1’ - 2 %W, &,I JW) dt 

= Bo(t3 CQdlL) + /%(531 (15) 
is identified with the dimensionless flux of 
energy through a plane slab when no internal 
sources of energy release are present; the flux 
integral (I-45b) 

establishes the proper value of the dimensionless 
flux associated with a uniform distribution of 
internal sources. One can also show that the 
integral of Y can be expressed as 

‘a” !I’(<, L) d5 = %x&L) - /M31 

2 
+ $ C%KL) - Bl(r31 + &. (17) 

0 L 

The effect of an infinitesimal change in 
optical thickness on the flux integral (15) and 
the surface values (9) can be examined with the 
aid of the derivatives [4] 

dQ(L) 
- = -/m3 

6 
(18) 

and 

d so(L) B - &3Bo(53 --= 
d5, 2 4 * 

(1% 

Finally, we remark that auxiliary function 
(7) in the limit rr. + co, becomes 

Y(5? a) = J3 IX + 4*(t)] (20) 

where q*(5) is the Hopf function that satisfies 
the integral equation [6] 

The conventional notation for the Hopf function 
is q; however, this symbol was used in {Cl], 
equations (I-6)) for total flux, and to avoid any 

possible confusion we denote the Hopf function 
by q*. The solution of Milne’s equation [6] 
for a semi-infinite atmosphere 

B*(5) = f rB*(5J &(I5 - 51/)d51 (22a) 
0 

is given by 

B*(5) = +I’(<, ~0) = @‘[5 + q*(5)] (22b) 

where nF is the uniform flux of radiant energy 
traversing the region in the negative x direction. 

The Hopf function can be represented [6] by 

1 

4*(t) = cl*(aJ) - 2;, o s exp ( - 5h.4 dp 
w4 Z(P) 

(23) 

where H(p) is Chandrasekhar’s H function [6] 
and 

Z@) = (1 - p tanh- ’ p)2 + fn2p2. (24) 

The Hopf function is monotone increasing with 
the limited range 

$= q*(O) < q*(r) < q*(a) = ; = 0.710446 

(25a) 

and q* is within 0.09 per cent of its asymptotic 
value at an optical distance of 3. Thus for large 
optical thickness 

q*(t) - ; = 0.710446. (25b) 

SOLUTIONS 

The principal objective of this section is to 
consider results from different attacks on the 
fundamental integral equations and to show, 
through comparisons, that predictions of the 
source functions correct to within a small 
fraction of 1 per cent can be achieved in terms 
of tabulated functions. We note first the im- 
portant contribution of Yamamoto [3] which 
was subsequently expressed more elegantly by 
King [8]. Yamamoto considered the physical 
problem of radiative transfer through a finite, 
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plane-parallel, grey atmosphere heated solely 
from below by uniform isotropic radiation. 
(In meteorological applications the boundaries 
of the medium are horizontal rather than 
vertical.) The source function for this problem 
can be inferred directly from equation (4) by 
setting S = 0 because of the absence of indepen- 
dent internal sources and & = 0 since there 
is no reflecting surface at the top of the atmos- 
phere. Yamamoto based his proposed solution 
on a comparison of the approximate discrete 
ordinate solution of equation (Sa) with the 
exact solution of the Milne problem. In the 
present notation, the functional form of the 
solutiont is 

@KL)=+-iQ(53 5-+ 
( > 

- tQK3W3 k*(5) - CI*(<L - 01 (26) 

where 4*(&J is the Hopf function defined by 
equation (21) and the coefficients Q and L 
remain to be determined as described below. 
Yamamoto identified Q(&J as the dimensionless 
flux, defined by equation (15) which has been 
evaluated in terms of the moments of the 
Chandrasekhar-Ambartsumian X and Y func- 
tions. The necessary moments are tabulated, but 
a discussion of numerical results is deferred to 
the next section. It should be stressed that 
Q(&J is equivalent to F/Z, in the notation of 
Yamamoto {[3], equation (21)) or F/Z, in the 
notation of King [S]. Thus Q(&) of this paper 
does not conform with the Q appearing in the 
references just cited. Now let the coefficient 
L(<,J be fixed by requiring that solution (26) 
be exact at the boundaries. Thus, by equating 
solution (26) evaluated at 5 = 0 with the known 
surface value (9a) 

ao(<L) 
2 = + + &QW 

+ ~Q(SL) WL) CCI*(~L) - q*(O)] (27) 

t In the Appendix we show that equation (26) can be 
deduced by Case’s method of normal mode expansion. 

one obtains. after solving for L and using 
identities (11) and (12) 

JXL) = 
21 J3 cc J3m (a2 + A) - l/J31 

. 6% + 81) [~*cL,) - 1/ J31 ' 
(28) 

In the above formula and those to follow we 
omit for simplicity the argument & of the 
moments a, and fir Likewise, the argument rL 
of Q and L will be omitted. The asymptotic 
behaviour of the above coefficients follows 
directly from equations (14) and (25b) 

L - 1, 5r.g 1 (29a) 

Q-i&. 
L 

PW 

Yamamoto’s proposed solution (26) was based 
on intuitive considerations, and Sobolev [9] 
has, in fact, demonstrated that it is not exact. 
The derivative of 0 (<,tJ becomes logarithmic- 
ally infinite at both boundaries 5 = 0, tL ; 
Sobolev has shown that if the derivative of 
solution (26) has the required precise growth 
rate as a boundary is approached, then a 
logical consequence of Yamamoto’s solution is 

L=L_ 1 

J3al + PI' (30) 

Equations (28) and (30) are consistent if and 
only if 

J3 
4* = -i_(+ + Bz). (31) 

It is possible to establish however, that equation 
(31) is incorrect. The tabular values of q* in 
Kourganoff [6], for example, do not agree 
with evaluations of the right side of equation 
(31) by means of Sobouti’s [2] tables of moments. 
An error of about @2 per cent occurs for small 
optical thicknesses. An independent check on 
the inaccuracy of equation (31) has also been 
given by Sobolev. One concludes, therefore, 
that the relation proposed by Yamamoto is 
not exact and that, as a consequence, an 
arbitrariness arises in the choice of L. We 
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choose here the value of L provided by equation 
(28), that is, the value for which equation (26) 
predicts the exact value of S(& &.) at the 
boundaries. 

Although equation (26) has been shown to 
be in error in its prediction of gradients near 
the boundaries, its incorrectness is virtually 
impossible to distinguish if one uses numerical 
tabulations with three-figure accuracy. This 
order of accuracy is typical of much of the 
numerical and graphical data given in the 
literature. In comparison with such data, there- 
fore, equation (26) is equally acceptable, has 
analytic advantages, and yields exact magnitudes 
in the regions most difficult to study, that is, 
at the boundaries. We propose now to acknow- 
ledge equation (26) as a particularly accurate 
approximation of 0 (<, &) and to use its analytic 
simplicity, that is, its representation of a 
function of two variables as a sum of products 
of unidimensional functions, to achieve a com- 
parable prediction of O,(& &). Since from 
equations (6) each of the universal functions is 
known once the auxiliary function Y({, 5,) is 
determined, it is appropriate to proceed by the 
intermediate step of developing a representation 
for Y. To this end, we note first, by a comparison 
of equations (6a) and (26), that Y(<, 53 satisfies 
the functional equation 

3Q 

It follows that 
q*KL - tn (32) 

+ N5, r3 + BKLJ (33) 

where N(<, &) is a symmetric function about 
5 = r,/2, that is, 

Nr, L) = ML - 5,53. (34) 

The additive term B(&) was included in order 
to impose the convenient condition 

NO, 53 = WL,5L.) = 0. (35) 

When e = 0, the auxiliary function Y is unity 
and this condition is used to determine B(&). 
Thus, 

J3 QL 
B(L) = 1 - 2x 

and Y can be rewritten as 

x [q*(5) - f/,/31 + N5,L). (36) 

One can easily verify that this expression for 
Y satisfies the right surface condition !P(&, &) 
= l/PO. It remains to deduce an expression 
for the symmetric function N(& 53. 

The relation between Y and CD is given by 
equation (7a) and hence from equation (36) 

For large optical thickness the coefficients are 
given by equations (14) and (29) and @ becomes 

Sobolev [lo] has derived the following asympto- 
tic formula for large optical thickness : 

+ S&S [4*(5L - 5) - 4*m (39) 

A comparison of the last two equations suggests 
a valid approximation for aN/ag throughout 
the full range of optical thickness, namely, 

+ Wd cq*(rL - 5) - q*(t)] (40) 
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where the coefficients C and D are to be de- 
termined for small optical thickness, and for 
large optical thickness they must have the 
asymptotic form 

J3 C(5L) - w53 - r_tr’ 
L 

(41) 

The proposed form for @ can now be written, 
from equations (37) and (40), as 

(42) 

Evaluating this expression for @ at the right 
surface 5 = rL by using the exact result @(tL, 
tL) = /?-J2, one obtains, after multiplying 

through by L/2, 

- c 2 5L + D CJ [4*(o) - 4*(53-J (43) 

But by differentiating equation (27) and using 
equations (18) and (19X we obtain 

P-lB0 dq*&) -=$Q+$QL- 
4 d5L 

- +mL 

- ;y[q*(o) - cI*(5L)l. PI 

D = 3 d(QL) 
330 dli ’ (46) 

It follows from equations (14a, 18, 29) that these 
coefficients have the correct asymptotic form 
(41). The moment PO is a tabulated function, 
but the derivative of QL is expressed in terms 
of /? _ 1 and the derivative of the Hopf function, 
neither of which is tabulated. Consequently, 
we resort to an alternative method to fur D. 

After integrating equation (42), the auxiliary 
function Y is found to be 

+ iPO(55L - 12) + ;y [q*(r) - q*(o)] 
0 

+ WMSL) - M1((L - 5) - J&(5)] (47) 

where 

M,(5) = j$*(L) d5,. (48) 
0 

The remaining unspecified coefficient 0(&-J is 
fixed by requiring that the integral of Y conform 
to the exact result (17). Thus by substituting 
equation (47) in (17) and solving for D, one 
finds, after using identities (12) and (131, that 

DC53 = (49) 

where 

These two expressions for j?_ Jo are identical 
The goal of representing OS (5, tL) as a sum 

if we choose of products of unidimensional functions is 
now achieved by simply substituting equation 

c = $flo (45) (47) in (6b) to obtain 
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the following formula of Huang [ 1 l] which was 
derived by variational methods : 

+ ;$g [4*(L - 0 + 4*(t) - q*G.J - 4*m 
4*(t) = Al + ji2 AjE,15) (52) 

0 where 

+ $ CM53 - M&L - r) - &(r)l. (51) 
A1 = 0.71044067 A4 = -0.61868635 

0 A, = -0.27894936 A, = 0.35260116. 

In obtaining this form of the solution, we 
A, = 0.52805161 

have used identity (12) and the definition (28) The exponential integral functions are tabu- 
of L. lated by several authors, see, for example [6], 

Table 1. The Hopffinction q*(l) and its integral M,(c) 

5 4*(t) M,(t) 5 4*(t) M,(t) 5 q*(t) M,(t) 

0 
0.01 
0.02 
0.03 
004 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 

0.57735 
0.58824 
0.59538 
060123 
060627 
0.61074 
0.61478 
0.61846 
0.62185 
0.62499 
0.62792 
064014 
064956 
0.65713 
0.66337 
0.66862 
0.67309 
0.67694 
0.68029 
0.68322 

0 
OGO584 
0.01176 
0.01774 
0.02378 
0.02986 
0.03599 
004216 
004836 
0.05459 
0.06086 
009257 
0.12483 
0.15750 
0.19052 
0.22382 
0.25737 
0.29112 
0.32505 
0.35914 

0.65 
0.70 
0.75 

0.85 
0.90 
0.95 
1.00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
200 
2.10 

0.68580 0.39337 
0.68808 0.42772 
0.69010 0.46217 
0.69191 0.49672 
0.69353 0.53136 
0.69498 0.56607 
0.69629 06OQ85 
0.69747 0.63570 
0.69854 0.67060 
0.70038 0.74055 
0.70191 0.81067 
0.70318 0.88092 
0.70424 0.95129 
0.70513 1.02176 
0.70589 109232 
0.70652 1.16294 
0.70706 1.23362 
0.70753 1.30435 
0.70792 1.37512 
0.70826 144593 

2.20 0.70855 1.51677 
2.30 0.70880 1.58764 
2.40 0.70901 1.65853 
2.50 0.70919 1.72944 
2.60 0.70935 1.80037 
2.70 0.70949 1.87131 
2.80 0.70961 1.94226 
2.90 0.70972 2.01323 
3.00 0.70981 2.08421 
3.10 0.70989 2.15519 
3.20 0.70995 2.22618 
3.30 0.71001 2.29718 
3.40 0.71007 2.36819 
3.50 0.71011 2.43920 
3.60 0.71015 2.51021 
3.70 0.71019 2.58123 
3.80 0.71022 2.65225 
3.90 0.71024 2.72327 
4.00 0.71027 2.79429 

NUMERICAL CALCULATIONS 

In the previous section, solutions of the 
universal functions O(<, &j and 0, (5, &) were 
expressed by equations (26) and (51) in terms of 
the unidimensional functions q*(t), M,(t), Q(cJ, 
L(&), D(<J, and Bo(&). It remains to compute 
and tabulate these requisite functions. The 
task is direct once accurate values of the Hopf 
function and the basic moment functions are 
known. 

Six-place tabular values of the Hopf function 
are given by Kourganoff ([6], p. 138). For 
computational purposes, a convenient represen- 
tation is given to a high degree of accuracy by 

4x 

p. 266, and formulas suitable for computing 
machine calculations are given by Abramowitz 
and Stegun ([12], p, 231). Table 1 lists five-place 
values of q*(r) computed for the Huang formula 
(52) for r 2 0.01. 

The integral of the Hopf function (48) can 
also be evaluated by using the Huang formula 
(52) : 

c 5 

M&t-) = 4*(tbdt, = 45 + c 
j=2 

X Aj[!-Ej+1(5;]* (53) 
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Likewise, 

5 5 

M,(t) = 
s 

M&J d5, = A,; + 

c 
0 j=2 

X Aj 
1 

f + Ej+2(<) - ~ 1 j+l’ 
(54) 

Table 1 also includes tabular values of M,(r). 
From equation (23), the asymptotic integral 
of 4* is 

since 

The authors are not aware of a simple proof of 
identity (55b); the result given was obtained 
indirectly from analysis based on Case’s method. 

A table of the moment functions a,(&) and 
/I,(&) given by Sobouti [2] was used in our 
earlier paper [ 11. Recently, a new and more 
accurate table of the Chandrasekhar-Ambart- 
sumian X and Y functions has been computed 
by Carlstedt and Mullikin [13] (note that 
tabulated values for o = 1 are required in the 
present application). This latter table was 
used to compute the moments necessary for the 
present work. Table 2 includes numerical 
values for optical thicknesses up to 3.5 of 
flo(&) and the coefficients Q(&) and I!,({,) 
defined by equations (15) and (28). The asympto- 
tic formulas at the bottom of the table may be 
used for larger values of optical thickness. 
An independent check on the values of Q is 
afforded by calculations of Mingle [14]. The 
flux Q(<d is equivalent to the total transmission 
function for a grey slab computed by Mingle, 
and the tabulation of Q(&) in Table 2 agrees 
with his numerical work to within one unit in 
the fifth decimal place. The coefficient D(&.) 
as defined by equation (49) also appears in 
Table 2. Some loss in the number of significant 

Table 2. The coefficients &,, Q, L and D 

0.20 0.77713 0.84918 1.0383 1.46 
0.40 0.66680 0.74585 1.0218 1.123 
0.60 0.58966 066730 1.0138 0.950 
0.80 0.53079 060473 10092 0.835 
1.00 0.48370 0.55340 1.0063 0.750 
1.20 044487 0.51037 1.0045 0.684 
1.40 0.41215 0.47370 1.0032 0.629 
160 0.38411 044204 10023 0.584 
1.80 0.35977 0.41441 10017 0.545 
2.00 0.33842 0.39006 1~0013 0,512 
2.20 0.31951 0.36843 1.0009 0.482 
2.40 0.30263 0.34909 1.0007 0.456 
2.60 0.28748 0.33169 1 mO5 0.433 
2.80 0.27378 0.31595 10004 0.412 
3.00 0.26135 0.30164 lmO3 0.3928 
3.50 0.23472 0.27097 I COO2 0.3524 

y = I.42089 

figures occurs in the calculation of D for small 
thickness. However, four-place accuracy can 
still be retained in the evaluation of !P and/or 
8s because D is the coefficient of a quantity 
that is small when the optical thickness is small. 

As a sample calculation, Table 3 lists numerical 
values of the universal function 0 and OS 
obtained using formulas (26) and (51). Values 
are given only over the half range of 5 since the 
functions are known to be, respectively, odd 
and even. A comparison of these results with 
independent numerical solutions of the basic 
integral equations (5) computed by the authors 
[l] indicates that the maximum fractional 
error of the approximate predictions will be 
less than 0.01 per cent. In spite of the consider- 
able literature regarding the problem of thermal 
radiative transfer, no numerical solutions of 
comparable accuracy have been found. An 
additional accuracy check was made by sub- 
stituting solutions (26) and (51) into the flux 
integrals (15) and (16) and evaluating the 
integrals by numerical quadrature. The results 
were found to agree with the exact values 
flo(al + PI) and <rJ2 to within fOWOO3. 
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r/5r. 

0 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

Table 3. Universal functions 8 and 8, 

tL = 0.2 & = 1.0 rL = 20 
@(5, r3 @d5. I;L) @(r, <L) @sd& r‘) @(& r3 @,(& 5r) 

0.6114 0.3217 0.758 1 0.5168 0.8308 0.7387 
0.5967 0.3280 0.7230 0.5674 0.7866 0.8816 
0.5845 0.3321 0.6946 06006 0.7509 0.9776 
0.5730 0.3353 0.6682 0.6268 0.7174 I.0546 
0.5620 0.3378 0.6429 0.6480 0.6851 1.1178 
0.5513 0.3399 0.6183 0.6652 0.6535 1.1695 
0.5408 0.3415 0.5942 0.6787 0.6224 1.2107 
0.5305 0.3427 0.5704 0.689 1 0.5916 1.2423 
0.5203 0.3435 0.5468 0.6963 0.5610 1.2646 
0.5101 0.3440 0.5234 0.7007 0.5305 1.2779 
0.5000 0.3442 0.5OQO 0.7021 0.5000 1.2824 

If equations (26) and (51) are evaluated for optical thickness of 2. It is clear that the para- 
rr. % 1 and r distant from the boundaries by bolic Eddington approximation can only repre- 
using formulas (14a, 25b, 29, 41, 55a), the sent the solution near the center of the slab 
following precise asymptotic forms are obtained and then only if the vertex of the parabola is 

@(W;-& 
( > 

5-g 
nearly coincident with the exact value of 

(56) S(tJ2, g,). Both 8 and OS are nonanalytic 
L at the boundaries r = 0, rL and, in fact, their 

@ s(L 53 N imL - t2) + ML +h2 + $3 
derivatives behave as E,(C) as < + 0 or E,(<, - 

(57) 5) as < + &. Clearly, this behaviour near the 
boundaries of a slab is not exhibited by the 

which aside from some numerical constants Eddington or diffusion approximations. 
correspond to the Eddington approximations 
given by (I-64) and (I-69). Figure 1 shows the REFERENCES 
various contributions to S,(& 53 - l/(4&,) 
given by the terms in form’ula (51) for an 
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and wall temperature slip in an absorbing planar 

oy 0.2 0.4 0.6 08 

nc. 1. The dashed curves represent the separate contributions to 

t-W& 5L) - l/(480)1 
(solid curve) as given by the terms in equation (51). 
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APPENDIX 

The purpose of this appendix is to show 
that the functional form of the Yamamoto 
solution (26) is equivalent to the zeroth-order 
approximation obtained by Case’s method [ 151 
of normal mode expansion. The restrictions 

previously imposed on the properties of the 
medium that is, grey gas, isotropic emission, 
etc., also apply to the following discussion. 

We digress for a moment and recall that 
specific intensity for a plane-parallel slab satis- 
fies the following equation of transfer [4] 

~ dZ(5, CL) 
___ = - m, 11) + w 

dt 
(Al) 

where p = cos 8 and 0 is the angle between 
the direction of increasing optical depth and a 
given direction. In the absence of independent 
internal sources, the source function 3(r) of a 
conservative radiation field is equal to the 
mean intensity i defined by 

1 = 1 _jr I(59 P) dp. 

Half-range intensities are introduced as 

I(& P) = Z’(5> P), O<P<l 

GE, P) = I-(& cl), -l<p<O } 

and the half-range fluxes are defined by 

4+(l) = 277 a /.J+(L p) dp 

where the net flux is 

45) = q+(5) - q-63 = 271 _S, At> cl) dp (A5) 

642) 

(A3) 

(A4a) 

(A4b) 

Since our interest here is confined to the 
universal function O(<, &), we assume that the 
slab is irradiated by uniform isotropic radiation 
of unit magnitude at the left-hand boundary 
(5 = 0) and that there is an absence of incident 
radiation at the right-hand boundary (5 = rL). 
The boundary conditions appropriate to the 
calculation of 0 (<, 53 are thus 

z+(o,p) = 1, z-(L PI = 0 646) 

and from equations (A4), q+(O) = qzl = TC 
andq-(t,) = &ii2 = 0. Consequently, the source 
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function (4) is The P signifies that an integral with the factor 

D(5) = @(L 53 = 3 __il &E, P) dp. 
1Mv - p) is to be evaluated as a Cauchy principal 

(A7) value and 8@ - v) is the Dirac delta function. 
For radiative transfer in a grey gas (c = 1 in 

The specific intensity at any point is given by a neutron transport literature) the two linearly 
formal solution of the equation of transfer independent discrete solutions [17] are a con- 
(Al). For example, the variation with angle of stant and a constant times (5 - p). Consequently, 
the intensity emanating from the right-hand the specific intensity can be expanded as 
surface is 

Z+(Lcl) = exp(-W) 
I(<, P) = Q + b(5 - cl) 

+ tL @ (5, L) exp C - (& - WPI dth d 
+ 

(A84 
i 4) CP,(P) exp t - Uv) dv (All) 

-1 

= y [Xtcl, &I + VP, t31. 
where a, b, and A(v) are arbitrary expansion 

(A8’4 coefficients which are fixed by requiring that 
boundary conditions (A6) be satisfied. The 

where the X and Y functions are tabulated by necessary normalization and orthogonality rela- 

Sobouti [2] and Carlstedt and Mullikin [13]. tions are given by KtiEer, McCormick and 

The emergent intensity (A8b) was derived by Summerfield [18]. Omitting the details of the 

King [16] by an invariant approach and was analysis outlined by Ferxiger and Simmons 

obtained here by utilizing equations (A8a), [19], one finds that the expansion coefficients 

(6a), (I-30), and (7a). The flux at the right-hand satisfy 

surface is from (A8b) and (A4a) rr. a=f-bT 6412) 

F = T = B&3 [a&) + P&)1 (A9) 1 

-1 
b=-.-- 

,4(v) exp ( - <Jv)v dv 

which is identical to the dimensionless flux Y + L H(v) 1 
0 

integral (15). It is important to recall that the 
total flux is constant across the slab in the 

(A13a) 

absence of internal sources. and 

The Case method [ 151 for the present problem 
consists of an expansion of the intensity Z(& p) A(v) = 
in terms of the eigenfunctions, of the transfer 

,/3 H;v; Z(v) 

equation (Al) (with 3(r) replaced by (A2)). 
1 

1 
The continuum eigenfunctions are 

+ 2H(v) Z(v) s 

A(v’) exp ( - <Jv’)v’ dv’, v , o 

H(v’) (v + v’) 

V,(P) exp ( - t/4 
0 

where 
(A13b) 

A( - v) = -A(v) exp (- &jJv) (A13c) 

rp”b4=Lp v - + A(v) 8(~ - v) (AlOa) 
2 v-/L where H(v) is Chandrasekhar’s H function [4], 

Z(v) is defined by equation (24), and the numeri- 
with cal value of y is given by equation (25a). The 

n(v) = 1 - vtanh-’ v (AlOb) 
function X(-v) appearing in the paper by 
Ferziger and Simmons [19] is equal to ,/3/H(v) 

and the index v is real and lies between - 1 and 1. in the present notation. 
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Equations (A13) form a pair of coupled 
equations to be solved for the coefficients b 
and A(v). Equations (A7, All, A12, Al3c) 
together with the normalization condition 

_.il (P,(P) dp = 1 (A14) 

can be combined to give an expression for the 
source function : 

3(5)=8(<,&)=;+b 

1 

+ 1 A(v) exp (- 5/v) dv 

1 

- : -.4(v) exp [ -(& - 5)/v] dv. c (A15) 

‘d 
Apart from a numerical factor, the coefficient 

b represents the radiative flux 

463 -= _ ‘b 
71 

3' (AW 

This is proved by introducing the intensity 
expansion (All) into the flux expression (A5) 
and using the known equality 

s, W,(P) dp = 0. 

Since flux is constant across the slab, equations 
(A9) and (A16) may be equated and therefore 

b = - &,(L) L(L) + B&)1 = - X?(L). 

(A17) 

Thus, the variation of b with optical thickness 
is known [see Table 2 for a tabulation of Q(t,)]. 

Equation (A13b) is a Fredholm integral 
equation for A(v) which can be solved by the 

ROBERT F. WARMING 

method of successive approximations. Substitu- 
tion of the lowest order approximation 

A(O)(v) = 
J3 ;; Z(v) 

(AIS) 

in equation (A15) yields, after noting identity 
(A17). 

_ $3 Qt53 

0 

+ ’ exp [-(CL - O/v1 dv s WV) Z(v) 1 
(Af9) 

0 

But by using the Hopf function as given by 
equation (23) equation (A19) can be rewritten as 

W,L.)~+-~QW t-$ 
( > 

- +QW [q*(5) - q*&. - 81. 6420) 
Apart from the absence of the last term multi- 
plicative factor I!,(&) which is of order one 
(see Table 2) this solution is identical to the 
proposed solution (26). Since higher order 
terms are neglected, the solution is, of course, 
not exact and consequently the coefficient of 
[q*(t) - q*(rL - <)I is not unique. However, 
a more accurate solution can be anticipated if 
the coefficient is assumed to be an unspecified 
constant which is then fixed by some additional 
constraint. This, in fact, was the way in which 
the actual coefficient QL in equation (26) was 
determined. 

The functional form of the OS solution (51) 
can also be deduced by using Case’s method. 
However, the analysis is less direct and will 
not be presented here. 

R&sum&-On donne a l’aide de fonctions tabukes une solution precise de l’expression fonctionnelle de 
la source pour le transport de chaleur par rayonnement a travers un gaz gris non isotherme absorbant 
et tmetteur place entre des plaques chauffkes. La prevision est bask sur une.formule approchke proposte 
originellement par Yamamoto pour une atmosphere gazeuse grise et on I’a &endue pour tenir compte 
de la presence dune source interne de dtgagement d’tnergie independante et uniforme. On montre que 
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la connaissance de la fonction de Hopf et des moments des fonctions X et Y de Chan~a~khar- 
Arnb~su~~ est sutlisante pour calcuier lea solutions avee une erreur relative maximale & 0,Ol pour 
cent. Une auto approximation basQ snr la methode de resolution de Case, est expose-e dans I’appendice 
et sert a .confirmer les expressions des formules approchbs. Les resuhats de cet article en liaison avec un 
article anterieur sufftsent pour calculer les quant.it&s physiques les plus importantes avec une precision 

et une simplicitt remarquables. 

Zusammenfasstmg-Eine genaue Losung der Quellfunktion ftir den Strahluugsw&rmetransport durch ein 
nichtisothermes, absorbierendes und emittierendes graues Gas zwischen xwei beheixten Platten wird in 
Form von tabellierten Funktionen gegeben. Die Berechnung beruht aufeiner urspriinglich von Yamamoto 
fti eine graue Gasatmosptire angegebene Nlherungsgleichung und wird erweitert um eine gleichmassige 
unabhangige Energieabgabe zu erfassen. Es wird gereigt, dass die Kenntnis der Hopf-Fur&ion und der 
Momente der Chandrasekhar-Ambartsumian X und Y Funktionen geniigt, um die Lcisungen mit einem 
maximalen Teilfehler von etwa 401% xu berechnen. Eine auf der Liisungsmethode von Case beruhende 
Alte~ativn~he~ng wird zur ~st~tigu~g der FunktioMlform~ der ~h~un~gleichun~n im Anhang 
wiedergegeben. Die Ergebnisse dieser Arbeit in Verbindung mit einer friiheren genilgen, urn die me&ten 

wichtigsten physikali~h~ Grossen mit bemerkenswerter Genaui~eit und Einfachheit xu ermitteln. 

AHHOTBI[HS-B solve KpOTabynUpOBaHbIX @~HKI@ IE~MBOAJTTCF~ ToYme pemerim I#YHKL~E~E 

UCTOWfUKa AJIR JlyWCTOrO TeIIJIOO6MeHa, B He&i3OTepMWleCKOt8 U3nyYalollle-nOrnOua~~e~ 

cepof4 raaoBoR cpega, 3aKnmeHKot MemAy Karpemwi nnacTmKam. PaweT 0cxoBaK Ha 

npnbnameaeoi-4 @OpMyiIe ffMaMaT0, Mo~K~n~apoeamot Am yyeTa ~e3ammiMoro ORHO- 

poAnor0 nerounuua wcnycnaeruoi4 aweprnrr. Hona3an0, uvo nnn pemesurr c mancnmanbnoti 
IlOrpeUIHOCTblo o,ol% AOcTaTOqHO 3HaTb $yHKqHI0 xOII@a M MOMeHTbI @yHKqUti x Si Y 

YaUApaCeKXapa II AM6ap~yMflKa. B llpUJlO?KeHIlli El3JIaraeTCR Apyl'Oa l'lOAXOA,OCHOBaHHblft 

Ha MeTOAe Kei33, KOTOpbIi CJlyHtKT AJlfi IlOATBepEiAeHZiH I.jyHUIJAOHaJIbHblX +OpM.IIpK- 

6inUXeHHbtX (POpMyJl. Pe3yJIbTalbI BTOti pa6oTM COBMeCTHO C naHHISMU llpeJ&blAyqe%-i CTaTbM 

MOryU lipl4MeHRTbCH AJIR pWieTa wacrdoaee BaFKHYX lflU3WieCKUX BeJiWIWH C BblCOKOfl 

TO'iHOCTbi0 U IIpOCTOTOti. 


